Теория вероятности. Вероятность события, случайные события (теория вероятности)

Классическое определение вероятности.

Вероятность события –это количественная мера, которая вводится для сравнения событий по степени возможности их появления.

Событие, представимое в виде совокупности (суммы) нескольких элементарных событий, называется составным.

Событие, которое нельзя разбить на более простые, называется элементарным.

Событие называется невозможным, если оно не происходит никогда в условиях данного эксперимента (испытания).

Достоверные и невозможные события не являются случайными.

Совместные события – несколько событий называют совместными, если в результате эксперимента наступление одного из них не исключает появления других.

Несовместные события – несколько событий называют несовместными в данном эксперименте, если появление одного из них исключает появление других. Два события называются противоположными, если одно из них происходит тогда и только тогда, когда не происходит другое.

Вероятностью события А – Р(А) называется отношение числа m элементарных событий (исходов), благоприятствующих появлению события А, к числу n всех элементарных событий в условиях данного вероятностного эксперимента.

Из определения вытекают следующие свойства вероятности:

1.Вероятность случайного события есть положительное число, заключенное между 0 и 1:

(2)

2. Вероятность достоверного события равна 1: (3)

3. Если событие невозможное, то его вероятность равна

(4)

4. Если события и несовместны, то

5. Если события А и В совместны, то вероятность их суммы равна сумме вероятностей этих событий без вероятности их совместного наступления:

Р(А+В) = Р(А) +Р(В) - Р(АВ) (6)

6. Если и - противоположные события, то (7)

7. Сумма вероятностей событий А 1 , А 2 , …, А n , образующих полную группу, равна 1:

Р(А 1) + Р(А 2) + …+ Р(А n) = 1. (8)

В экономических исследованиях значения и в формуле могут интерпретироваться по-другому. При статистическом определении вероятности события под понимается количество наблюдений результатов эксперимента, в которых событие встречалось ровно раз. В этом случае отношение называется относительной частотой (частостью) события

События А, В называются независимыми , если вероятности каждого из них не зависит от того, произошло или нет другое событие. Вероятности независимых событий называются безусловными .

События А, В называются зависимыми , если вероятность каждого из них зависит от того, произошло или нет другое событие. Вероятность события В, вычисленная в предположении, что другое событие А уже осуществилось, называется условной вероятностью .


Если два события А и В – независимые, то справедливы равенства:

Р(В) = Р(В/А), Р(А) = Р(А/В) или Р(В/А) – Р(В) = 0 (9)

Вероятность произведения двух зависимых событий А, В равна произведению вероятности одного из них на условную вероятность другого:

Р(АВ) = Р(В) ∙ Р(А/В) или Р(АВ) = Р(А) ∙ Р(В/А) (10)

Вероятность события В при условии появления события А:

(11)

Вероятность произведения двух независимых событий А, В равна произведению их вероятностей:

Р(АВ) = Р(А) ∙ Р(В) (12)

Если несколько событий попарно независимы, то отсюда еще не следует их независимость в совокупности.

События А 1 , А 2 , …, А n (n>2) называются независимыми в совокупности, если вероятность каждого из них не зависит от того, произошли или нет любые события из числа остальных.

Вероятность совместного появления нескольких событий, независимых в совокупности, равна произведению вероятностей этих событий:

Р(А 1 ∙А 2 ∙А 3 ∙…∙А n) = Р(А 1)∙Р(А 2)∙Р(А 3)∙…∙Р(А n). (13)

Если при наступлении события вероятность событияне меняется, то событияиназываютсянезависимыми .

Теорема: Вероятность совместного появления двух независимых событий и (произведения и) равна произведению вероятностей этих событий.

Действительно, так как событияинезависимы, то
. В этом случае формула вероятности произведения событийипринимает вид.

События
называютсяпопарно независимыми , если независимы любые два из них.

События
называютсянезависимыми в совокупности (или просто независимыми) , если независимы каждые два из них и независимы каждое событие и все возможные произведения остальных.

Теорема: Вероятность произведения конечного числа независимых в совокупности событий
равна произведению вероятностей этих событий.

Проиллюстрируем различие в применении формул вероятности произведения событий для зависимых и независимых событий на примерах

Пример 1 . Вероятность попадания в цель первым стрелком равна 0,85, вторым 0,8. Орудия сделали по одному выстрелу. Какова вероятность того, что в цель попал хотя бы один снаряд?

Решение: P(A+B) =P(A) +P(B) –P(AB) Так как выстрелы независимы, то

P(A+B) = P(A) +P(B) –P(A)*P(B) = 0.97

Пример 2 . В урне находится 2 красных и 4 черных шара. Из нее вынимают подряд 2 шара. Какова вероятность того, что оба шара красные.

Решение: 1 случай. Событие А – появление красного шара при первом вынимании, событие В – при втором. Событие С – появление двух красных шаров.

P(С) =P(A)*P(B/A) = (2/6)*(1/5) = 1/15

2 случай. Первый вынутый шар возвращается в корзину

P(С) =P(A)*P(B) = (2/6)*(2/6) = 1/9

Формула полной вероятности.

Пусть событие может произойти только с одним из несовместных событий
, образующих полную группу. Например, в магазин поступает одна и та же продукция от трех предприятий и в разном количестве. Вероятность выпуска некачественной продукции на этих предприятиях различна. Случайным образом отбирается одно из изделий. Требуется определить вероятность того, что это изделие некачественное (событие). Здесь события
– это выбор изделия из продукции соответствующего предприятия.

В этом случае вероятность события можно рассматривать как сумму произведений событий
.

По теореме сложения вероятностей несовместных событий получаем
. Используя теорему умножения вероятностей, находим

.

Полученная формула называется формулой полной вероятности .

Формула Байеса

Пусть событие происходит одновременно с одним изнесовместных событий
, вероятности которых
(
) известны до опыта (вероятности априори ). Производится опыт, в результате которого зарегистрировано появление события, причем известно, что это событие имело определенные условные вероятности
(
). Требуется найти вероятности событий
если известно, что событиепроизошло (вероятности апостериори ).

Задача состоит в том, что, имея новую информацию (событие Aпроизошло), нужно переоценить вероятности событий
.

На основании теоремы о вероятности произведения двух событий

.

Полученная формула носит название формулы Байеса .

Основные понятия комбинаторики.

При решении ряда теоретических и практических задач требуется из конечного множества элементов по заданным правилам составлять различные комбинации и производить подсчет числа всех возможных таких комбинаций. Такие задачи принято называть комбинаторными .

При решении задач комбинаторики используют правила суммы и произведения.

Зависимость событий понимается в вероятностном смысле, а не в функциональном. Это значит, что по появлению одного из зависимых событий нельзя однозначно судить о появлении другого. Вероятностная зависимость означает, что появление одного из зависимых событий только изменяет вероятность появления другого. Если вероятность при этом не изменяется, то события считаются независимыми.

Определение : Пусть - произвольное вероятностное пространство, - некоторые случайные события. Говорят, что событие А не зависит от события В , если его условная вероятность совпадает с безусловной вероятностью :

.

Если , то говорят, что событие А зависит от события В .

Понятие независимости симметрично, то есть, если событие А не зависит от события В ,то и событие В не зависит от события А . Действительно, пусть . Тогда . Поэтому говорят просто, что события А и В независимы.

Из правила умножения вероятностей вытекает следующее симметричное определение независимости событий.

Определение : События А и В, определенные на одном и том же вероятностном пространстве , называются независимыми , если

Если , то события А и В называются зависимыми .

Отметим, что данное определение справедливо и в случае, когда или .

Свойства независимых событий.

1. Если события А и В являются независимыми, то независимыми являются также следующие пары событий: .

▲ Докажем, например, независимость событий . Представим событие А в виде: . Поскольку события являются несовместными, то , а в силу независимости событий А и В получаем, что . Отсюда , что и означает независимость . ■

2. Если событие А не зависит от событий В 1 и В 2 , которые являются несовместными (), то событие А не зависит и от суммы .

▲ Действительно, используя аксиому аддитивности вероятности и независимость события А от событий В 1 и В 2 , имеем:

Связь между понятиями независимости и несовместности.

Пусть А и В - любые события, имеющие ненулевую вероятность: , так что . Если при этом события А и В являются несовместными (), то и поэтому равенство не может иметь место никогда. Таким образом, несовместные события являются зависимыми .

Когда рассматривают более двух событий одновременно, то попарная их независимость недостаточно характеризует связь между событиями всей группы. В этом случае вводится понятие независимости в совокупности.

Определение : События , определенные на одном и том же вероятностном пространстве , называются независимыми в совокупности , если для любого 2 £ m £ n и любой комбинации индексов справедливо равенство:

При m = 2 из независимости в совокупности следует попарная независимость событий. Обратное неверно.


Пример. (Бернштейн С.Н.)

Случайный эксперимент заключается в подбрасывании правильного четырехгранника (тетраэдра). Наблюдается грань, выпавшая книзу. Грани тетраэдра окрашены следующим образом: 1 грань - белая, 2 грань - чёрная,
3 грань - красная, 4 грань - содержит все цвета.

Рассмотрим события:

А = {Выпадение белого цвета}; B = {Выпадение черного цвета};

C = {Выпадение красного цвета}.

Тогда ;

Следовательно, события А , В и С являются попарно независимыми.

Однако, .

Поэтому события А , В и С независимыми в совокупности не являются.

На практике, как правило, независимость событий не устанавливают, проверяя ее по определению, а наоборот: считают события независимыми из каких-либо внешних соображений или с учетом обстоятельств случайного эксперимента, и используют независимость для нахождения вероятностей произведения событий.

Теорема (умножения вероятностей для независимых событий).

Если события ,определенные на одном и том же вероятностном пространстве , являются независимыми в совокупности, то вероятность их произведения равна произведению вероятностей:

▲ Доказательство теоремы следует из определения независимости событий в совокупности или из общей теоремы умножения вероятностей с учетом того, что при этом

Пример 1(типовой пример на нахождение условных вероятностей, понятие независимости, теорему сложения вероятностей).

Электрическая схема состоит из трех независимо работающих элементов. Вероятности отказов каждого из элементов соответственно равны .

1) Найти вероятность отказа схемы.

2) Известно, что схема отказала.

Какова вероятность того, что при этом отказал:

а) 1-й элемент; б) 3-й элемент?

Решение. Рассмотрим события = {Отказал k -й элемент}, и событие А = {Отказала схема}. Тогда событие А представляется в виде:

.

1) Поскольку события и несовместными не являются, то аксиома аддитивности вероятности Р3) неприменима и для нахождения вероятности следует использовать общую теорему сложения вероятностей, в соответствии с которой

Общая постановка задачи: известны вероятности некоторых событий, а вычислить нужно вероятности других событий, которые связаны с данными событиями. В этих задачах возникает необходимость в таких действиях над вероятностями, как сложение и умножение вероятностей.

Например, на охоте проиведены два выстрела. Событие A - попадание в утку с первого выстрела, событие B - попадание со второго выстрела. Тогда сумма событий A и B - попадание с первого или второго выстрела или с двух выстрелов.

Задачи другого типа. Даны несколько событий, например, монета подбрасывается три раза. Требуется найти вероятность того, что или все три раза выпадет герб, или того, что герб выпадет хотя бы один раз. Это задача на умножение вероятностей.

Сложение вероятностей несовместных событий

Сложение вероятностей используется тогда, когда нужно вычислить вероятность объединения или логической суммы случайных событий.

Сумму событий A и B обозначают A + B или A B . Суммой двух событий называется событие, которое наступает тогда и только тогда, когда наступает хотя бы одно из событий. Это означает, что A + B – событие, которое наступает тогда и только тогда, когда при наблюдении произошло событие A или событие B , или одновременно A и B .

Если события A и B взаимно несовместны и их вероятности даны, то вероятность того, что в результате одного испытания произойдёт одно из этих событий, рассчитывают, используя сложение вероятностей.

Теорема сложения вероятностей. Вероятность того, что произойдёт одно из двух взаимно несовместных событий, равна сумме вероятностей этих событий:

Например, на охоте произведены два выстрела. Событие А – попадание в утку с первого выстрела, событие В – попадание со второго выстрела, событие (А + В ) – попадание с первого или второго выстрела или с двух выстрелов. Итак, если два события А и В – несовместные события, то А + В – наступление хотя бы одного из этих событий или двух событий.

Пример 1. В ящике 30 мячиков одинаковых размеров: 10 красных, 5 синих и 15 белых. Вычислить вероятность того, что не глядя будет взят цветной (не белый) мячик.

Решение. Примем, что событие А – «взят красный мячик», а событие В – «взят синий мячик». Тогда событие - «взят цветной (не белый) мячик». Найдём вероятность события А :

и события В :

События А и В – взаимно несовместные, так как если взят один мячик, то нельзя взять мячики разных цветов. Поэтому используем сложение вероятностей:

Теорема сложения вероятностей для нескольких несовместных событий. Если события составляют полное множество событий, то сумма их вероятностей равна 1:

Сумма вероятностей противоположных событий также равна 1:

Противоположные события образуют полное множество событий, а вероятность полного множества событий равна 1.

Вероятности противоположных событий обычно обозначают малыми буквами p и q . В частности,

из чего следуют следующие формулы вероятности противоположных событий:

Пример 2. Цель в тире разделена на 3 зоны. Вероятность того что некий стрелок выстрелит в цель в первой зоне равна 0,15, во второй зоне – 0,23, в третьей зоне – 0,17. Найти вероятность того, что стрелок попадет в цель и вероятность того, что стрелок попадёт мимо цели.

Решение: Найдём вероятность того, что стрелок попадёт в цель:

Найдём вероятность того, что стрелок попадёт мимо цели:

Задачи посложнее, в которых нужно применять и сложение и умножение вероятностей - на странице "Различные задачи на сложение и умножение вероятностей" .

Сложение вероятностей взаимно совместных событий

Два случайных события называются совместными, если наступление одного события не исключает наступления второго события в том же самом наблюдении. Например, при бросании игральной кости событием А считается выпадение числа 4, а событием В – выпадение чётного числа. Поскольку число 4 является чётным числом, эти два события совместимы. В практике встречаются задачи по расчёту вероятностей наступления одного из взаимно совместных событий.

Теорема сложения вероятностей для совместных событий. Вероятность того, что наступит одно из совместных событий, равна сумме вероятностей этих событий, из которой вычтена вероятность общего наступления обоих событий, то есть произведение вероятностей. Формула вероятностей совместных событий имеет следующий вид:

Поскольку события А и В совместимы, событие А + В наступает, если наступает одно из трёх возможных событий: или АВ . Согласно теореме сложения несовместных событий, вычисляем так:

Событие А наступит, если наступит одно из двух несовместных событий: или АВ . Однако вероятность наступления одного события из нескольких несовместных событий равна сумме вероятностей всех этих событий:

Аналогично:

Подставляя выражения (6) и (7) в выражение (5), получаем формулу вероятности для совместных событий:

При использовании формулы (8) следует учитывать, что события А и В могут быть:

  • взаимно независимыми;
  • взаимно зависимыми.

Формула вероятности для взаимно независимых событий:

Формула вероятности для взаимно зависимых событий:

Если события А и В несовместны, то их совпадение является невозможным случаем и, таким образом, P (AB ) = 0. Четвёртая формула вероятности для несовместных событий такова:

Пример 3. На автогонках при заезде на первой автомашине вероятность победить , при заезде на второй автомашине . Найти:

  • вероятность того, что победят обе автомашины;
  • вероятность того, что победит хотя бы одна автомашина;

1) Вероятность того, что победит первая автомашина, не зависит от результата второй автомашины, поэтому события А (победит первая автомашина) и В (победит вторая автомашина) – независимые события. Найдём вероятность того, что победят обе машины:

2) Найдём вероятность того, что победит одна из двух автомашин:

Задачи посложнее, в которых нужно применять и сложение и умножение вероятностей - на странице "Различные задачи на сложение и умножение вероятностей" .

Решить задачу на сложение вероятностей самостоятельно, а затем посмотреть решение

Пример 4. Бросаются две монеты. Событие A - выпадение герба на первой монете. Событие B - выпадение герба на второй монете. Найти вероятность события C = A + B .

Умножение вероятностей

Умножение вероятностей используют, когда следует вычислить вероятность логического произведения событий.

При этом случайные события должны быть независимыми. Два события называются взаимно независимыми, если наступление одного события не влияет на вероятность наступления второго события.

Теорема умножения вероятностей для независимых событий. Вероятность одновременного наступления двух независимых событий А и В равна произведению вероятностей этих событий и вычисляется по формуле:

Пример 5. Монету бросают три раза подряд. Найти вероятность того, что все три раза выпадет герб.

Решение. Вероятность того, что при первом бросании монеты выпадет герб , во второй раз , в третий раз . Найдём вероятность того, что все три раза выпадет герб:

Решить задачи на умножение вероятностей самостоятельно, а затем посмотреть решение

Пример 6. Имеется коробка с девятью новыми теннисными мячами. Для игры берут три мяча, после игры их кладут обратно. При выборе мячей игранные от неигранных не отличают. Какова вероятность того, что после трёх игр в коробке не останется неигранных мячей?

Пример 7. 32 буквы русского алфавита написаны на карточках разрезной азбуки. Пять карточек вынимаются наугад одна за другой и укладываются на стол в порядке появления. Найти вероятность того, что из букв получится слово "конец".

Пример 8. Из полной колоды карт (52 листа) вынимаются сразу четыре карты. Найти вероятность того, что все эти четыре карты будут разных мастей.

Пример 9. Та же задача, что в примере 8, но каждая карта после вынимания возвращается в колоду.

Задачи посложнее, в которых нужно применять и сложение и умножение вероятностей, а также вычислять произведение нескольких событий - на странице "Различные задачи на сложение и умножение вероятностей" .

Вероятность того, что произойдёт хотя бы одно из взаимно независимых событий , можно вычислить путём вычитания из 1 произведения вероятностей противоположных событий , то есть по формуле.

В заданиях ЕГЭ по математике встречаются и более сложные задачи на вероятность (нежели мы рассматривали в части 1), где приходится применять правило сложения, умножения вероятностей, различать совместные и несовместные события.

Итак, теория.

Совместные и несовместные события

События называются несовместными, если появление одного из них исключает появление других. То есть, может произойти только одно определённое событие, либо другое.

Например, бросая игральную кость, можно выделить такие события, как выпадение четного числа очков и выпадение нечетного числа очков. Эти события несовместны.

События называются совместными, если наступление одного из них не исключает наступления другого.

Например, бросая игральную кость, можно выделить такие события, как выпадение нечетного числа очков и выпадение числа очков, кратных трем. Когда выпадает три, реализуются оба события.

Сумма событий

Суммой (или объединением) нескольких событий называется событие, состоящее в наступлении хотя бы одного из этих событий.

При этом сумма двух несовместных событий есть сумма вероятностей этих событий:

Например, вероятность выпадения 5 или 6 очков на игральном кубике при одном броске, будет , потому что оба события (выпадение 5, выпадение 6) неовместны и вероятность реализации одного или второго события вычисляется следующим образом:

Вероятность же суммы двух совместных событий равна сумме вероятностей этих событий без учета их совместного появления:

Например, в торговом центре два одинаковых автомата продают кофе. Вероятность того, что к концу дня в автомате закончится кофе, равна 0,3. Вероятность того, что кофе закончится в обоих автоматах, равна 0,12. Найдем вероятность того, что к концу дня кофе закончится хотя бы в одном из автоматов (то есть или в одном, или в другом, или в обоих сразу).

Вероятность первого события «кофе закончится в первом автомате» также как и вероятность второго события «кофе закончится во втором автомате» по условию равна 0,3. События являются совместными.

Вероятность совместной реализации первых двух событий по условию равна 0,12.

Значит, вероятность того, что к концу дня кофе закончится хотя бы в одном из автоматов есть

Зависимые и независимые события

Два случайных события А и В называются независимыми, если наступление одного из них не изменяет вероятность наступления другого. В противном случае события А и В называют зависимыми.

Например, при одновременном броске двух кубиков выпадение на одном из них, скажем 1, и на втором 5, – независимые события.

Произведение вероятностей

Произведением (или пересечением) нескольких событий называется событие, состоящее в совместном появлении всех этих событий.

Если происходят два независимых события А и В с вероятностями соответственно Р(А) и Р(В), то вероятность реализации событий А и В одновременно равна произведению вероятностей:

Например, нас интересует выпадение на игральном кубике два раза подряд шестерки. Оба события независимы и вероятность реализации каждого из них по отдельности – . Вероятность того, что произойдут оба эти события будет вычисляться по указанной выше формуле: .

Подборку задач на отработку темы смотрите .